

 © 2019, IJCSE All Rights Reserved 529

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-6, June 2019 E-ISSN: 2347-2693

Mining High Utility Pattern from Sequential Database

A. A. Tale
1*

, N. R. Wankhade
2

1, 2

Late G. N. Sapkal College of Engineering, Nashik, India

*Corresponding Author: ankittale@hotmail.com Tel.: +91-7798-495602

DOI: https://doi.org/10.26438/ijcse/v7i6.529533 | Available online at: www.ijcseonline.org

Accepted: 08/Jun/2019, Published: 30/Jun/2019

Abstract— Now-a-days, finding an interesting pattern from the given dataset is an emerging trend to learn more about user

behaviour and patterns of interest. Prior work on this problem many pattern mining approaches use two-phase pattern mining

with one exception that are however inefficient and scalable to mine high utility sequential pattern mining. The way mention

above suffers scalability issue for numerous candidates and growing sequence. This paper proposes an approach to apply tight

upper bound for pruning patterns. Whereas, the freshness lies in the implemented algorithm that helps to prune tight sequence

utility. The applied data structure helps us to maintain sequence patterns whose values are greater than applied thresholds.

Extensive experiments on real datasets show that the defined algorithm is able to mine high utility sequential pattern

incrementally.

Keywords—Data-mining, High Utility Patterns, Sequential Pattern Mining, Pattern Mining, Pruning, Itemset share framework.

I. INTRODUCTION

Discovery of an interesting pattern, and sequential pattern

has been keyed tasks of data mining, which have an

assortment of application such as analysis of genome in

sequential patterns, analyzed web-access log and inventory

management prediction where interestingness is measured.

Most of the utility mining algorithm employs candidate

generations for and normal, or sequential patterns. A high

utility sequential pattern is described as the arrangement of

product in such an interesting pattern that crop maximum

profit from an implementation. Whereas, in a habit, a

sequence database is incrementally updated over time. For

example, in a mobile subscriber database, a series of the new

transaction are made by a new customer will create a new

sequence infused in subscriber’s database and those

transactions are made to affix in the database corresponding

to a sequence already in the present database.

In this paper, we address both of the above challenges by

introducing new mining algorithm with novel data structure

to prune out efficient data from a database sequence.

1. Essentially, we propose a tight utility upper bound

of a sequence to improve pattern mining expertly by

removing more sequences that was not able to

complete thresholds with an implemented

algorithm.

2. To aid, incremental high utility sequential pattern

mining, we propose a data structure that would

generate a candidate pattern tree to maintain each

sequence whose transaction is greater than the

threshold value.

3. Our algorithm helps us to incrementally mine out

high sequential patterns based on their sequential

utility. An experiment is carried out to evaluate the

performance of a proposed algorithm, a result shows

that it outperforms state another algorithm to mine

sequential patterns.

The rest of the paper is organized as follows. Section 2

shows information about the literature survey. Section 3

show the propped system and discuss it in briefly with

implementation. Section 4 defines final result and analysis

observed which mining patterns. Section 5 defines

conclusion. Section 6 describe future implementation, and

conclude it.

II. RELATED WORK

A. Frequent Pattern Mining

Frequent pattern mining is interrelated to High Utility Pattern

Mining, including constraint-based mining. In upcoming

segments, we will briefly review work in utility mining and

on frequent pattern mining.

Initially, we will review frequent pattern mining initially

proposed by Agarwal, where he proposed an efficient

algorithm that generates all significant associations rules

between interrelated item & database. Where an algorithm

contains buffer management and a fictitious pruning

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 530

approach to obtained desired results, it employs an anti-

monotonicity property, where the support of a superset of the

pattern at most the support of pattern. Apriori from Agarwal

& Shrikant et.al[7] is renowned bread-first search algorithm

for mining frequent pattern is the disk-based database as far

as frequent pattern length. FP-growth by Han is another

renowned depth-first search algorithm which compresses a

database based on FP-Tree in main memory. Eclat is another

algorithm proposed by Zaki et.al is the famous hybrid

database, that keeps a database or a database partition in a

vertical tid-list in either breath-first list and depth-first search

and vice-versa. Also, Elact explores such a breadth-first

search strategy. Whereas depth-first search strategy is less

memory intensive as compared to breadth-first search.

B. Constraint Based Pattern Mining

Constraint-based mining is a milestone derived from

frequently based mining mainly focus on how to push

constraint on Frequent Patterns Mining Algorithm.

Pei et.al[xx] discussed the constraints based on weighted

support and observed the property is known as convertible

anti-monotonicity, by arranging in descending weight orders.

They also demonstrate how to push constraint into FP-

growth algorithms. Bucila et.al considered the pattern that

satisfies partnership of anti-monotone and monotone

constraint and proposed an algorithm, DualMiner which

prune search space constraints.

Bonchi et.al [10] introduced and Ex-Ante property that states

if any transaction which does not satisfy for given monotone

constraints should be removed or dropped from transactions.

For a further, extends Bonchi & Goethals et.al [11] applied

an Ex-Ante property on FP-growth algorithm for pruning

search space. Bonchi and Lucchese et.al [12] conclude the

reduction technique to a unified framework. De Readt et.al.

inspected how standard constraints programming techniques

can be applied to constraint-based problems that are

antimonotone, monotone and convertible. Bayardo and

Agarwal et.al [9], Morishita and Sese et.al applied a

technique for pruning search space based on upper bound

when constraints are not monotone & anti-monotone or

convertible. Based on this implementation we are applying

the technique to prune search space based on tight upper

bound in given implementations.

III. METHODOLOGY

Every mining approach uses two-phase candidate generation

approach, further our architecture proposed incremental

mining high utility sequential pattern approach as the initial

phase, and incremental phase. In the initial phase, we

propose and utility pattern miner to generate transaction

utility sequence and prefix extension utility to mine out high

utility sequential pattern. To obtain better achievement in the

incremental phase we propose data structure that helps to

generate the candidate tree for mining high utility sequential

patterns.

Fig. 3.1. Implementation

When a new sequence is inserted into the database (D), our

proposed algorithm for incremental high utility sequential

pattern is employed to mine the new high sequential utility

from original database D. The key idea of our proposed

algorithm is to Incremental High Utility Sequential Pattern is

to traverse each node of tree T is based on depth first search

approach and skip that node which does not show up in the

updated sequence.

The implementation of USP-Miner algorithm and Inc-USP

Miner are defined in below sections.

A. Efficient Utility Calculation

In the above algorithm, we calculate efficient utility

calculation, where s and t are two sequences where t is a

subset of s. Innocent way to obtain the utility of each

occurrence and obtained the maximum utility of all

instances. This motivates us to design efficient way to

calculate maximum utility.

Assumption 1:

Given two arrangements s and t where t is a subset of s,

suppose that s has multiple instances of t and let the set of the

distinct extension positions of sequence t in s be P = {p1,

p2..., pq}. The utility oft in s (i.e., u (t, s)) equals to max {u

(t, pi, s) |∀pi ∈P}.

Theorem 1: Given a sequence t, one t’s i-extension sequence

t', and a sequence s in D where t0 v s, the maximum utility of

t' in s at extension position p (i.e., u(t', p, s)) can be derived

by u(t0,p,s) = u(t, p, s)+u(i0,p,s) where item i' is the

extension item of t'.

Theorem 2: Given a sequence t, one t’s s-extension sequence

t', and a sequence s in D where t' subset of s, let item i' be the

extension item of t' and p be an extension position of t'. Also

let P = {p1, p2... pq}be the set of extension positions oft in s.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 531

The maximum utility of t' in s at extension position p can be

derived from u (t', p, s) = max {u (t, pi, s) |∀ pi ∈P and pi <

p} +u (i0, p, s).

Theorem 1 and 2 moreover provides efficient way of mining

utility patterns. But according to assumption 1, it is efficient

to derive utility from each instance of node and transaction.

Whereas, a candidate tree is an expansion of lexicographic

tree buffering of set D for incremental high utility sequential

pattern. TSU is having a tight upper bound of utilities. Hence

the transaction sequence utility guide to the construction of

candidate tree T in the first phase.

B. The Intial Phase

In initial phase we define our USP-miner algorithm that help

us to mine out candidate tree. Efficient utility calculation,

where s and t are two sequences where t is a subset of s. An

innocent way to obtain the utility of each occurrence and

obtained the maximum utility of all instances. This motivates

us to design efficient way to calculate maximum utility.

A candidate tree is an expansion of lexicographic tree

buffering of set D for incremental high utility sequential

pattern. We also apply tight upper bound to prune only

desired sequence which are able to generates the sequential

patterns also, TSU is having a tight upper bound of utilities.

Below case needs to consider:

 Case 1: t is a high TSU sequence in D and D'.

Case 2: t is a low TSU sequence in D and becomes a high

TSU sequence in D'.

Consider below algorithm for generation of candidate tree

node.

Algorithm:

Input:

A sequence database, minimum thresholds, and an empty set

of high utility sequential pattern, node sequence.

Output: Tree Structure of Candidate Pattern

Begin

1. For each tree node, check if prefix utility pattern is greater

than user minimum utility.

2. Buffered that node into generating a tree, else remove the

node if it does not satisfy minimum thresholds.

3. Recursively sort out each transaction to mine candidate

tree.

End

C. The Incremental Phase

The updated database D obtained from an initial phase is are

partition into a disjoint set. After the database D is updated

with the new sequence, we need to adjust the candidate tree

T to support multiple database updates. Following algorithm

is used to incrementally mine out high utility transaction

Algorithm:

Input: A sequence database D', minimum thresholds, a

candidate pattern tree T from Initial Phase and node

sequence.

Output: High Utility Sequential Pattern.

 Begin:

1. If all sequence in the database in transaction t is empty

sequence skip those sequence.

2. Calculate Transaction Sequence Utility of each extension

sequence t in database D.

3. Based on Case 1, the algorithm always updates the node

inserted into the database to generate a HUSP Tree.

4. Based on Case 2, our algorithm builds the nodes insert into

them and recursively calls USP miner to expands and

generate HUSP tree.

End

In this implementation, the utility of a sequence is buffered

in the tree T has to be updated, to obtain the up-to-date

utility. We can skip those sequence which are not able to

presence in provided updated sequence.

IV. RESULTS AND DISCUSSION

We compare our algorithm with the best state-of-art-

algorithm on varying data characteristics, including different

utility distribution changing data sized, different average

length of transactions.

 First, we generate efficient utility calculation from input

transactions. Below graph shows the running time of the

algorithm on the respective data-set. The running time with

efficient utility anti-proportional to supports. For every

utility that was generated, our developed algorithm takes less

amount of time as compared to state-of-the-art-algorithm.

After that, we conduct a comparative experiment with the

number of items ranging from 1K to 5K. However, the

running time of other algorithm increases as there is an

increase in the candidate.

 Finally, we evaluate our algorithm. Based on transaction

length by comparing results. As depicted the time increase

with the average length of the transaction since the average

length, and number of high utility sequence also increases,

that why we see a gasp among the time interval for running

an algorithm.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 532

Fig: 4.1 Memory Consumption Comparison

Fig: 4.2 Execution Time Comparison

From above figure 4.1 and 4.2 we can conclude that the

implemented system requires less amount of memory

transaction as compared to an existing transaction, also we

required less amount of time to generate sequential pattern

and which can be said less prone to scalability as contrasted

to the present system based on the improvement in database.

V. CONCLUSION AND FUTURE SCOPE

This paper proposed a new algorithm to mine out

incrementing high utility sequence patterns, with tight upper

bound pruning which help us to generate sequential patterns.

Our contribution includes a data structure to generate a

candidate tree to maintain each sequence whose TSU is

greater than the minimum thresholds, an incremental

algorithm HUSP for mining patterns based on depth-first

search approach. We also applied tight upper bound pruning

to increase efficiency by eliminating more sequence that is

not able to high utility compared to an existing high utility

sequence pattern. In the future, we can work on high utility

sequential pattern mining for parallel and distributed

database and their application in big data.

REFERENCES

[1] J.Liu, Ke Wang, Benjamin C.M.Fung, "Mining High Utility

Patterns in One Phase without Generating Candidates", IEEE

Trans.Knowl. Data Eng., vol. 28, no.5, pp-1245-1247, May 2016.

[2] S. Dawar and V. Goyal, “UP-Hist tree: An efficient data structure

for mining high utility patterns from transaction databases,” in

Proc. 19th Int. Database Eng. Appl. Symp., 2015, pp. 56–61.

[3] V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE Trans. Knowl. Data Eng., vol. 25, no. 8, pp.

1772–1786, Aug. 2013.

[4] A. Erwin, R. P. Gopalan, and N. R. Achuthan, “Efficient mining of

high utility itemsets from large datasets,” in Proc. 12th Pacific-

Asia Conf. Adv. Knowl. Discovery Data Mining, 2008, pp. 554–

561.

[5] H. Yao and H. J. Hamilton, “Mining itemset utilities from

transaction databases,” Data Knowl. Eng., vol. 59, no. 3, pp. 603–

626, 2006.

[6] R. Agarwal, C. Aggarwal, and V. Prasad, “Depth first generation of

long patterns,” in Proc. ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, 2000, pp. 108–118

[7] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules,” in Proc. 20th Int. Conf. Very Large Databases, 1994, pp.

487–499.

[8] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient

tree structures for high utility pattern mining in incremental

databases,” IEEE Trans. Knowl. Data Eng., vol. 21, no. 12, pp.

1708– 1721, Dec. 2009.

[9] R. Bayardo and R. Agrawal, “Mining the most interesting rules,” in

Proc. 5th ACM SIGKDD Int. Conf. Knowl. Discovery Data

Mining, 1999, pp. 145–154.

[10] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, “ExAnte:

A preprocessing method for frequent-pattern mining,” IEEE Intell.

Syst., vol. 20, no. 3, pp. 25–31, May/Jun. 2005.

[11] F. Bonchi and B. Goethals, “FP-Bonsai: The art of growing and

pruning small FP-trees,” in Proc. 8th Pacific-Asia Conf. Adv.

Knowl. Discovery Data Mining, 2004, pp. 155–160.

[12] F. Bonchi and C. Lucchese, “Extending the state-of-the-art of

constraint-based pattern discovery,” Data Knowl. Eng., vol. 60,

no. 2, pp. 377–399, 2007.

[13] T. De Bie, “Maximum entropy models and subjective

interestingness: An application to tiles in binary databases,” Data

Mining Knowl. Discovery, vol. 23, no. 3, pp. 407–446, 2011

[14] P. Fournier-Viger, C.-W. Wu, S. Zida, and V. S. Tseng, “FHM:

Faster high-utility itemset mining using estimated utility

cooccurrence pruning,” in Proc. 21st Int. Symp. Found. Intell.

Syst., 2014, pp. 83–92.

[15] Y.-C. Li, J.-S. Yeh, and C.-C. Chang, “Isolated items discarding

strategy for discovering high utility itemsets,” Data Knowl. Eng.,

vol. 64, no. 1, pp. 198–217, 2008.

 International Journal of Computer Sciences and Engineering Vol. 7(6), Jun 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 533

Authors Profile

Mr. Ankit A Tale pursed Bachelor of

Computer Engineering from University

of Pune, India in 2014. He is currently

pursuing Master of Computer

Engineering from University of Pune,

India and currently working as Developer

in Aress Software Pvt Ltd ,since 2018. He

has published one research papers in

reputed international journals and it’s also available online.

His main research work focuses on Algorithms, Machine

Learning, Artifical Intellegence, Big Data Analytics, Data

Mining, IoT based education. He has 2+ years of software

development experience.

Mr N R Wankhade pursed Bachelor of

Computer Engineering from University

of Amravati in year 2009. He is currently

pursuing Ph.D. and currently working as

Professor in Department of Computer

Engineering, University of Pune, India

since 2005. He is a member of IEEE &

IEEE computer society since 2013. He

has published more than 20 research

papers in reputed international journals including Thomson

Reuters (SCI & Web of Science) and conferences including

IEEE and it’s also available online. His main research work

focuses on Cryptography Algorithms, Network Security,

Cloud Security and Privacy, IoT and Computational

Intelligence based education. He has 20 years of teaching

experience and 4 years of Research Experience.

