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Abstract— Now-a-days, finding an interesting pattern from the given dataset is an emerging trend to learn more about user 

behaviour and patterns of interest. Prior work on this problem many pattern mining approaches use two-phase pattern mining 

with one exception that are however inefficient and scalable to mine high utility sequential pattern mining. The way mention 

above suffers scalability issue for numerous candidates and growing sequence. This paper proposes an approach to apply tight 

upper bound for pruning patterns. Whereas, the freshness lies in the implemented algorithm that helps to prune tight sequence 

utility. The applied data structure helps us to maintain sequence patterns whose values are greater than applied thresholds. 

Extensive experiments on real datasets show that the defined algorithm is able to mine high utility sequential pattern 

incrementally. 
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I.  INTRODUCTION  

Discovery of an interesting pattern, and sequential pattern 

has been keyed tasks of data mining, which have an 

assortment of application such as analysis of genome in 

sequential patterns, analyzed web-access log and inventory 

management prediction where interestingness is measured. 

Most of the utility mining algorithm employs candidate 

generations for and normal, or sequential patterns. A high 

utility sequential pattern is described as the arrangement of 

product in such an interesting pattern that crop maximum 

profit from an implementation. Whereas, in a habit, a 

sequence database is incrementally updated over time. For 

example, in a mobile subscriber database, a series of the new 

transaction are made by a new customer will create a new 

sequence infused in subscriber’s database and those 

transactions are made to affix in the database corresponding 

to a sequence already in the present database. 

 

In this paper, we address both of the above challenges by 

introducing new mining algorithm with novel data structure 

to prune out efficient data from a database sequence. 

 

1. Essentially, we propose a tight utility upper bound 

of a sequence to improve pattern mining expertly by 

removing more sequences that was not able to 

complete thresholds with an implemented 

algorithm. 

 

2. To aid, incremental high utility sequential pattern 

mining, we propose a data structure that would 

generate a candidate pattern tree to maintain each 

sequence whose transaction is greater than the 

threshold value. 

 

3. Our algorithm helps us to incrementally mine out 

high sequential patterns based on their sequential 

utility. An experiment is carried out to evaluate the 

performance of a proposed algorithm, a result shows 

that it outperforms state another algorithm to mine 

sequential patterns. 

 

The rest of the paper is organized as follows. Section 2 

shows information about the literature survey. Section 3 

show the propped system and discuss it in briefly with 

implementation. Section 4 defines final result and analysis 

observed which mining patterns. Section 5 defines 

conclusion. Section 6 describe future implementation, and 

conclude it. 

 

II. RELATED WORK  

A. Frequent Pattern Mining 

Frequent pattern mining is interrelated to High Utility Pattern 

Mining, including constraint-based mining. In upcoming 

segments, we will briefly review work in utility mining and 

on frequent pattern mining. 

Initially, we will review frequent pattern mining initially 

proposed by Agarwal, where he proposed an efficient 

algorithm that generates all significant associations rules 

between interrelated item & database. Where an algorithm 

contains buffer management and a fictitious pruning 
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approach to obtained desired results, it employs an anti-

monotonicity property, where the support of a superset of the 

pattern at most the support of pattern. Apriori from Agarwal 

& Shrikant et.al[7] is renowned bread-first search algorithm 

for mining frequent pattern is the disk-based database as far 

as frequent pattern length. FP-growth by Han is another 

renowned depth-first search algorithm which compresses a 

database based on FP-Tree in main memory. Eclat is another 

algorithm proposed by Zaki et.al is the famous hybrid 

database, that keeps a database or a database partition in a 

vertical tid-list in either breath-first list and depth-first search 

and vice-versa. Also, Elact explores such a breadth-first 

search strategy. Whereas depth-first search strategy is less 

memory intensive as compared to breadth-first search. 

B. Constraint Based Pattern Mining 

Constraint-based mining is a milestone derived from 

frequently based mining mainly focus on how to push 

constraint on Frequent Patterns Mining Algorithm. 

 

Pei et.al[xx] discussed the constraints based on weighted 

support and observed the property is known as convertible 

anti-monotonicity, by arranging in descending weight orders. 

They also demonstrate how to push constraint into FP-

growth algorithms. Bucila et.al considered the pattern that 

satisfies partnership of anti-monotone and monotone 

constraint and proposed an algorithm, DualMiner which 

prune search space constraints. 

 

Bonchi et.al [10] introduced and Ex-Ante property that states 

if any transaction which does not satisfy for given monotone 

constraints should be removed or dropped from transactions.  

For a further, extends Bonchi & Goethals et.al [11] applied 

an Ex-Ante property on FP-growth algorithm for pruning 

search space. Bonchi and Lucchese et.al [12] conclude the 

reduction technique to a unified framework. De Readt et.al. 

inspected how standard constraints programming techniques 

can be applied to constraint-based problems that are 

antimonotone, monotone and convertible. Bayardo and 

Agarwal et.al [9], Morishita and Sese et.al applied a 

technique for pruning search space based on upper bound 

when constraints are not monotone & anti-monotone or 

convertible. Based on this implementation we are applying 

the technique to prune search space based on tight upper 

bound in given implementations. 

 

III. METHODOLOGY 

Every mining approach uses two-phase candidate generation 

approach, further our architecture proposed incremental 

mining high utility sequential pattern approach as the initial 

phase, and incremental phase. In the initial phase, we 

propose and utility pattern miner to generate transaction 

utility sequence and prefix extension utility to mine out high 

utility sequential pattern. To obtain better achievement in the 

incremental phase we propose data structure that helps to 

generate the candidate tree for mining high utility sequential 

patterns. 

 

Fig. 3.1. Implementation 

When a new sequence is inserted into the database (D), our 

proposed algorithm for incremental high utility sequential 

pattern is employed to mine the new high sequential utility 

from original database D. The key idea of our proposed 

algorithm is to Incremental High Utility Sequential Pattern is 

to traverse each node of tree T is based on depth first search 

approach and skip that node which does not show up in the 

updated sequence. 

The implementation of USP-Miner algorithm and Inc-USP 

Miner are defined in below sections. 

A. Efficient Utility Calculation 

In the above algorithm, we calculate efficient utility 

calculation, where s and t are two sequences where t is a 

subset of s. Innocent way to obtain the utility of each 

occurrence and obtained the maximum utility of all 

instances. This motivates us to design efficient way to 

calculate maximum utility. 

 

Assumption 1: 

Given two arrangements s and t where t is a subset of s, 

suppose that s has multiple instances of t and let the set of the 

distinct extension positions of sequence t in s be P = {p1, 

p2..., pq}. The utility oft in s (i.e., u (t, s)) equals to max {u 

(t, pi, s) |∀pi ∈P}. 

 

Theorem 1: Given a sequence t, one t’s i-extension sequence 

t', and a sequence s in D where t0 v s, the maximum utility of 

t' in s at extension position p (i.e., u(t', p, s)) can be derived 

by u(t0,p,s) = u(t, p, s)+u(i0,p,s) where item i' is the 

extension item of t'. 

 

Theorem 2: Given a sequence t, one t’s s-extension sequence 

t', and a sequence s in D where t' subset of s, let item i' be the 

extension item of t' and p be an extension position of t'. Also 

let P = {p1, p2... pq}be the set of extension positions oft in s. 
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The maximum utility of t' in s at extension position p can be 

derived from u (t', p, s) = max {u (t, pi, s) |∀ pi ∈P and pi < 

p} +u (i0, p, s). 

 

Theorem 1 and 2 moreover provides efficient way of mining 

utility patterns. But according to assumption 1, it is efficient 

to derive utility from each instance of node and transaction. 

Whereas, a candidate tree is an expansion of lexicographic 

tree buffering of set D for incremental high utility sequential 

pattern. TSU is having a tight upper bound of utilities. Hence 

the transaction sequence utility guide to the construction of 

candidate tree T in the first phase. 

 

B. The Intial Phase 

In initial phase we define our USP-miner algorithm that help 

us to mine out candidate tree. Efficient utility calculation, 

where s and t are two sequences where t is a subset of s. An 

innocent way to obtain the utility of each occurrence and 

obtained the maximum utility of all instances. This motivates 

us to design efficient way to calculate maximum utility. 

 

A candidate tree is an expansion of lexicographic tree 

buffering of set D for incremental high utility sequential 

pattern. We also apply tight upper bound to prune only 

desired sequence which are able to generates the sequential 

patterns also, TSU is having a tight upper bound of utilities. 

Below case needs to consider: 

 

 Case 1: t is a high TSU sequence in D and D'. 

Case 2:  t is a low TSU sequence in D and becomes a high 

TSU sequence in D'. 

Consider below algorithm for generation of candidate tree 

node. 

 

Algorithm: 

 

Input: 

A sequence database, minimum thresholds, and an empty set 

of high utility sequential pattern, node sequence. 

Output: Tree Structure of Candidate Pattern 

 

Begin 

1. For each tree node, check if prefix utility pattern is greater 

than user minimum utility.  

2. Buffered that node into generating a tree, else remove the 

node if it does not satisfy minimum thresholds. 

3. Recursively sort out each transaction to mine candidate 

tree. 

End 

 

C. The Incremental Phase 

The updated database D obtained from an initial phase is are 

partition into a disjoint set. After the database D is updated 

with the new sequence, we need to adjust the candidate tree 

T to support multiple database updates. Following algorithm 

is used to incrementally mine out high utility transaction 

 

Algorithm: 

 

Input: A sequence database D', minimum thresholds, a 

candidate pattern tree T from Initial Phase and node 

sequence. 

Output: High Utility Sequential Pattern. 

 

 Begin: 

1. If all sequence in the database in transaction t is empty 

sequence skip those sequence. 

2. Calculate Transaction Sequence Utility of each extension 

sequence t in database D.  

3. Based on Case 1, the algorithm always updates the node 

inserted into the database to generate a HUSP Tree. 

4. Based on Case 2, our algorithm builds the nodes insert into 

them and recursively calls USP miner to expands and 

generate HUSP tree. 

End 

 

In this implementation, the utility of a sequence is buffered 

in the tree T has to be updated, to obtain the up-to-date 

utility. We can skip those sequence which are not able to 

presence in provided updated sequence. 

 

IV. RESULTS AND DISCUSSION 

We compare our algorithm with the best state-of-art-

algorithm on varying data characteristics, including different 

utility distribution changing data sized, different average 

length of transactions. 

 

    First, we generate efficient utility calculation from input 

transactions. Below graph shows the running time of the 

algorithm on the respective data-set. The running time with 

efficient utility anti-proportional to supports. For every 

utility that was generated, our developed algorithm takes less 

amount of time as compared to state-of-the-art-algorithm.  

After that, we conduct a comparative experiment with the 

number of items ranging from 1K to 5K. However, the 

running time of other algorithm increases as there is an 

increase in the candidate. 

     Finally, we evaluate our algorithm. Based on transaction 

length by comparing results. As depicted the time increase 

with the average length of the transaction since the average 

length, and number of high utility sequence also increases, 

that why we see a gasp among the time interval for running 

an algorithm. 
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Fig: 4.1 Memory Consumption Comparison 

 

 
Fig: 4.2 Execution Time Comparison 

 

 

From above figure 4.1 and 4.2 we can conclude that the 

implemented system requires less amount of memory 

transaction as compared to an existing transaction, also we 

required less amount of time to generate sequential pattern 

and which can be said less prone to scalability as contrasted 

to the present system based on the improvement in database. 

 

V. CONCLUSION AND FUTURE SCOPE 

This paper proposed a new algorithm to mine out 

incrementing high utility sequence patterns, with tight upper 

bound pruning which help us to generate sequential patterns. 

Our contribution includes a data structure to generate a 

candidate tree to maintain each sequence whose TSU is 

greater than the minimum thresholds, an incremental 

algorithm HUSP for mining patterns based on depth-first 

search approach. We also applied tight upper bound pruning 

to increase efficiency by eliminating more sequence that is 

not able to high utility compared to an existing high utility 

sequence pattern. In the future, we can work on high utility 

sequential pattern mining for parallel and distributed 

database and their application in big data. 
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